Quantitative prediction of the absorption maxima of azobenzene dyes from bond lengths and critical points in the electron density.

نویسندگان

  • Bård Buttingsrud
  • Bjørn K Alsberg
  • Per-Olof Astrand
چکیده

The relationship between the molecular electronic structure and the position of the absorption maxima in 191 azobenzene dyes has been studied by quantitative structure-property relations. A strong linearity is observed between the nitrogen-nitrogen bond length and the absorption wavelength with a squared correlation coefficient of 0.90. Bond lengths and properties of the critical points located on the electron density distribution are used to build partial least squares regression models for quantitative prediction of absorption wavelengths. Fifty of the azobenzene dyes were used as an external test set to evaluate the overall performance of the models. The simplest model where only the nitrogen-nitrogen bond length is used as a descriptor gives a root mean square error of prediction of 12.6 nm. When the value, laplacian and ellipticity of the electron density in all comparable bond critical points are used, the error of prediction is reduced to 5.4 nm. However, this model is less general and robust to prediction of novel molecular structures. It is demonstrated that the nitrogen-nitrogen bond in the azobenzene compounds relates to the colour of the dyes and in particular the nitrogen-nitrogen bond length plays a central role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

QSPR Study of the Absorption Maxima of Azobenzene Dyes

A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima of azobenzene dyes. The entire set of 191 azobenzenes was divided into a training set of 150 azobenzenes and a test set of 41 azobenzenes according to Kennard and Stones algorithm. A seven-descriptor model, with squared correlation coefficient (R) of 0.8755 and standard error of...

متن کامل

The Structure and Chemical Bond of FOX-7: The AIM Analysis and Vibrational Normal Modes

FOX-7 (1,1-diamino-2,2-dinitroethylene) recently is expected as a relatively new energetic material with high-performance and low sensitivity. The RHF and MP2 levels and DFT method with B3LYP functional with aug-cc-pVDZ basis set have been used for obtaining equilibrium geometry and Rho function (electron density distribution). By the aid of fundamental physical theorems implemented in the ...

متن کامل

Theoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method

The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 9 18  شماره 

صفحات  -

تاریخ انتشار 2007